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The effect of incidence on the unsteady laminar flow past an impulsively started, slender 
elliptic cylinder was studied numerically for the Reynolds numbers ranging between 25 
and 600. The DuFort-Frankel scheme and the Buneman algorithm were adopted to solve 
the system of governing equations in stream-function-vorticity formulation. As a result of 
the present numerical experiment, we identified five distinct flow regimes: two regimes 
of steady flow and three regimes of unsteady flow. The two steady flow regimes were 
demarcated by the presence of a steady separation bubble. The boundary between the 
two steady regimes was well represented by a simple empirical formula. The three unsteady 
flow regimes were characterized by the frequency and amplitude of the periodic variations 
of force coefficients. These five regimes were mapped out in the incidence-Reynolds 
number plane. The details of flow characteristics pertinent to the respective flow regime 
are discussed. 

Keywords: unsteady laminar flow; elliptic cylinder; unsteady flow regime; Strouhal 
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I n t r o d u c t i o n  

The characteristics of two-dimensional flows behind bluff 
bodies, in particular, behind circular cylinders, have been 
extensively investigated by many authors. In the case of a 
circular cylinder, it is well known that if the Reynolds number 
is in the range 3-6, the flow separates from the cylinder and a 
pair of attached vortices form behind the cylinder. A further 
increase of the Reynolds number above 30-45 leads tO an 
oscillation of the wake, and the wake eventually develops to 
the well documented Karman vortex street. 1,2 

No systematic investigation, however, of the unsteady flow 
patterns of the laminar flow past an elliptic cylinder at incidence 
over a wide range of the Reynolds numbers has been reported 
yet. Evidently, it is anticipated that there are considerable 
similarities between the flow past an elliptic cylinder and the 
flow past a circular cylinder. Several research results have been 
published for low Reynolds number flows past an inclined 
elliptic cylinder, for example, Hasimoto, 3 Tomotika and Aoi, 4 
Imai, 5 and Shintani et al. ~ T h e  early stage of unsteady flow 
past an elliptic cylinder at zero degree incidence has been 
studied by Richards, 7 and Dennis and Chang, s Wang 9 and 
Staniforth 1° investigated theoretically the separation and stall 
in the developing stages of the flow around an impulsively 
started elliptic cylinder. Taneda It conducted experiments to 
ascertain the relation between the lift and the separation of an 
impulsively started elliptic cylinder at incidences of 20 ° and 45 °. 
Honji ~2 performed experiments to delineate the flow pattern 
around an impulsively started elliptic cylinder at various 
incidences using flow visualization techniques for the Reynolds 
numbers in the range between 50 and 600. Three different 
cylinders were used in his work, each having the thickness to 
chord ratio of 33.3%, 50%, and 55%. He dealt with only the 

Address reprint requests to Dr. Hyun at the Department of Mechanical 
Engineering, Korea Advanced Institute of Science and Technology, 
P.O. Box 150, Chong Ryang, Seoul, Korea. 
Received 11 July 1988; accepted 20 January 1989 

© 1989 Butterworth Publishers 

Int. J. Heat and Fluid Flow, Vol. 10, No. 4, December 1989 

initial stage of unsteady flow. It was pointed out that the initial 
formation of a wake bubble behind the near side of the elliptic 
cylinder was considerably affected by the incidence. The laminar 
flows past an elliptic cylinder at 45 ° incidence for the Reynolds 
numbers of 15, 30 and 200 were studied numerically by Lugt 
and Haussling. 13 In that study, steady state solutions were 
found for the Reynolds numbers of 15 and 30. However, when 
the Reynolds number was 200, the well-known Karman vortex 
street was observed. Recently, Pate114 adopted the series 
truncation method to solve the stream function and vorticity 
equations for the flow past an elliptic cylinder at 0 °, 30 °, 45 °, 
and 90 ° incidence. The Reynolds numbers considered in his 
work were 100 and 200. 

A survey of the previous literature indicated that the flow 
pattern has been studied only for a small number of discrete 
values of incidence. Results of previous studies also suggest that 
the flow characteristics are altered considerably when the 
incidence varies. As has been mentioned earlier, no systematic 
and comprehensive investigation has been reported to single 
out the question of how the flow structure changes when the 
variation of the incidence is minute. In order to address this 
problem, a large number of flow calculations are necessary 
using very small increments of the angle of incidence. It is 
expected that the incidence will be a vital parameter to 
determine the transitory behavior as the flow transforms from 
the well-established steady-state solutions to the Karman vortex 
street. We intend, in this study, to characterize the change of 
flow patterns as the incidence varies for a given Reynolds 
number. Further, we attempt to construct a regime diagram 
which demonstrates the character of transitory flow past an 
elliptic cylinder in the incidence-Reynolds number plane. 

Numer ica l  detai ls  

Governing equations and boundary conditions 
For an effective depiction of the flow past an elliptic cylinder 
at incidence, we employ an elliptic coordinate system a s  
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Figure I Ell ipt ic coord ina te  system 

sketched in Figure 1. The coordinate transformation from x-y 
plane to ~-~/plane is defined by 

x+iy=ccosh(~+i~l) c > 0  (1) 

The chord length of the elliptic cylinder is given by 

1= 2c cosh ~o (2) 

where ~o is the ~-coordinate at the surface of the cylinder. 
The nondimensional governing equations formulated in 

terms of stream function, and vorticity, in ~ and ~/coordinates 
can be written as t3.t4 

(~C0 1 t~(C0, ~) L f_l ft~2co t~2co"~ ) 

at J a(~,~) Re \a~" a,1")3 
and 

Here, 

j = h 2 = c o s h  z ~ - c o s  2 ~ (5) 

L = / = 2  cosh ~0 (6) 
C 

The dimensionless velocity components in terms of stream 
function, are expressed as 

1 ~@ (7a) 

1 <~VJ (7b) 
u.= h ~ 

Along the surface of the cylinder, the no-slip condition is 

applied, for t>0 :  

¢=a~=O at ~=~o (8) a¢ 

Far from the cylinder, the potential flow solution will be 
recovered. Thus, the boundary condition there is written as 

a¢ 
- e¢°cosh(~-~o)sin0/-a)  as ~-~oo (9) 

a¢ 

The initial condition for the impulsively starting flow can be 
given by the following potential flow field: 

~b = - e ¢° sinh(~ - ~o ) s in0/ -  a) (10) 

Numer ica l  methods 

The governing equations described in the previous section were 
integrated in a finite domain. Since our aim was to characterize 
the flow patterns for various combinations of the Reynolds 
number and the incidence, a large number of numerical 
calculations had to be carded out. For the present calculation, 
the incidence was varied from 0 to 90 ° with a minimum 
increment of 2.50 for a fixed Reynolds number. The elliptic 
cylinder adopted for the present investigation was defined by 
~o = 0.15, which gave the chord length of 2.023 and the thickness 
to chord ratio of 14.89%. 

The DuFort-Frank¢l scheme was used to solve the vorticity 
transport equation (Equation 3). The Buneman algorithm with 
first variant (see Buzbee et alJ 5) was employed to solve the 
stream function equation (Equation 4). Since the Buneman 
algorithm is a direct method to solve the Poisson's equation, 
it was necessary to examine the solutions afterward. When the 
accuracy of the solutions was not satisfactory, the successive 
line overrelaxation (SLOR) was subsequently used until the 
solution attained the desired accuracy. This procedure reduced 
substantially the computational time required to solve the 
stream function equation. The five-point approximate formula 
of Equation 4 was solved by the Buneman algorithm with cyclic 
odd/even reduction normal to the ~-dircction. Next, the accuracy 
of its solution was checked by the residual [V2~-col at each 
grid point. For the present calculation, the accuracy was 
considered to be sufficient when the maximum of the residual 
was less than 10 -4. If the above criterion was not met, we 
subsequently employed SLOR to solve Equation 4, using the 
solution of the Buneman algorithm as an initial guess, until the 
desired accuracy was attained. With the single precision mode 
of IBM 3083JX, the residuals were of the order of 10- 3-10- s 
However, with the double precision mode of the same machine, 
the residuals were always less than 10 -4. Therefore, the SLOR 
procedure was unnecessary for this case. 

N o t a t i o n  

c Focal distance 
C Coefficient in transformed Equation 12 
CL Lift coefficient 
J, h 2 Jacobian 
l Chord length 
l,, It Characteristic lengths in streamwise and transverse 

direction, respectively 
L Dimensionless chord length, l/c 
n Frequency of oscillation 
Re Reynolds number, Ul/v 
St Strouhal number, ln/U 

t 
t 
U 

x, y 
Xoo 
Yoo 

V 

oJ 

0 
~,~ 

Dimensionless time 
Thickness of elliptic cylinder 
Free stream velocity 
Dimensionless velocity in ~ and t/direction, 
respectively 
Cartesian coordinates 
x-coordinate of the outer boundary at y = 0 
y-coordinate of the outer boundary at x = 0 
Incidence 
Kinematic viscosity 
Vorticity 
Stream function 
Elliptic coordinates 
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The allowable time step, At, for the DuFort-Frankel scheme 
was determined as follows. The modified equation of the 
DuFort-Frankel scheme for Equation 3 becomes ~ 

-}- O( At 2 , A~ 2 , Arl 2) (11 ) 

where 

C =  L (At) ~ ~ +  1 
ReJ  { (A~)2  (At/) 2} (12) 

For the consistency of the solution, it is necessary that the 
coefficient C be very small. For a given value of C, At can be 
obtained as 

P C Re Jmin 71/2 j (13) 

Here, J=~. is the minimum value of J over all grid points. 
For the present calculation, C was given the value of 0.001-0.004. 
In order to resolve the rapid changes of the initial flow field 
after the impulsive starting, actual time steps were given much 
smaller values than that given by Equation 13. The first time 
step was set to be one-tenth of At,. .  given by Equation 13. 
After the first time step was advanced, At was gradually 
increased to the final value of Atm~ over some specified time 
interval, t,, which was prescribed beforehand. 

Other specifics, such as the grid spacings (A~ and A~I), the 
number of grid points, the length of the outer boundary 
measured from the major axis of the elliptic cylinder, the 
prescribed time interval, t,, and the final time, tf, for the 
calculations performed in the present work, are listed in Table 1. 
As explicitly expressed in Table 1, the sizes of the calculation 
domains were taken to be sufficiently large (see the values of 
x ~ l l  and y=ll). 

Since the computational domain was finite, the boundary 
condition at infinity prescribed by Equation 9 could not be 
strictly implemented. The boundary condition of Equation 9 
was applied only on the upstream half of the outer boundary. 
On the downstream half of the outer boundary, the convection 
of vorticity and momentum across the border with free stream 
velocity was imposed. At the body surface a one-sided second- 
order difference scheme t 3 was employed to calculate the vorticity. 
For the details of the finite difference approximations for 
Equations 3 and 4, and of the boundary conditions, see Lugt 
and Haussling. 13 

R e s u l t s  a n d  d i s c u s s i o n  

For the flow past an elliptic cylinder at incidence, the geometrical 
asymmetry brings about considerable changes in the flow 
characteristics. Both the separation phenomena and the free 
shear layer development in the wake are very sensitive to 
changes of incidence. Inspection of the essential data, i.e., 
the streamlines, equivorticity lines, CL-curves, enabled us to 
delineate five regimes of distinct flow characteristics which are 

Flow regimes of unsteady laminar flow: J. K. Park et al. 

/ 
~1" ~ ~ 7 , . eme  m 

/ ~ ~ ~ v m a m v  
/ YT_ • ~. r-0R THE FLAT R . A ~  

4oot-, ~ ~ ~ (K:F lo: 

I ~ ~. • ~ ~o=0.1, a = 4 5  ° 

El. 
0 / / . . 7 1 ~ . . .  - - . / i l l l - -~Jl l l :  

~ I I I 
0 10 20 30  40  50 60 70 80  90  

a (degree) 

Figure 2 Flow domain map 

sketched in Figure 2. The characteristics of the flows in these 
regimes will be discussed in detail. 

Steady f low regimes: regimes I and II 

For the flows in regimes I and II, almost steady-state solutions 
were obtained. The distinction between regime I and II was 
necessary to identify the existence of a separation bubble; flows 
in regime I did not possess any separation bubble, while those 
in regime II had a separation bubble over the surface. Since 
there was no separation bubble in regime I flow, one attachment 
line near the leading edge and a separation line in the vicinity 
of the trailing edge characterized the streamline pattern. Steady- 
state solutions were approached monotonically from the corre- 
sponding initial inviscid solutions in regime I. The streamlines, 
from some distance downstream, were quite straight and 
parallel to the main flow direction. The corresponding vorticity 
contour indicated that the positive and negative vorticities 
merely spread downstream in a symmetrical manner. This 
suggested that the wake was stable in regime I flow. 

When the angle of incidence was further increased from that 
of a flow in regime I, the flow pattern with a separation bubble 
(regime II flow) appeared. As mentioned previously, the presence 
of a separation bubble and the steadiness of the flow at large 
times are the salient features of regime II flows. Typical 
streamline patterns and vorticity contours are displayed in 
Figure 3. In the region adjacent to regime I (i.e., region of lower 
incidence in regime II), the flow establishment toward steady 
state was monotonic. However, in the region close to regime 
III (i.e., region of higher incidence in regime II), steady state 
was reached in an oscillatory manner. In the former case, the 
steady-state separation bubble emerged monotonically. How- 
ever, in the latter case, the steady-state separation bubble 
appeared after a cycle of"opening" or "bursting" of an incipient 
separation bubble. The transient behavior of flow in this regime 
was well described by Lugt and Hanssling, and hence it is not 
repeated here. The computational results for the flows past an 

Tab le  I The list of parameters used in the calculation 

= N¢ x N, A~ x A~ x®/I y®/I t, t, 

0 < = < 10 84 x 128 0.04 x 0.0491 7.952 7.937 1.0 15-30 
10 < = < 30 90 x 64 0.04 x 0.0982 10.106 10.094 1.5 30-60 
30 < = < 60 95 x 64 0.04 x 0.0982 12.341 12.331 2.0 30-60 
60 < = < 90 98 x 64 0.04 x 0.0982 13.913 13.904 2.5 30-45 
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Figure3 Streamlines and equi- 
vorticity lines for Re = 100, ¢ = 22.5 ° 
at t = 30 

Figure4 Streamlines and equi- 
vorticity lines for Re=300,  ¢ = 2 0  ° 
at t = 30 

t 
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Figure 5 The sequential development of  streamlines 

with time for Re = 300, = = 20 ° 

elliptic cylinder for the case of Re = 15 and ¢ = 45 ° and of Re = 30 
and ~t=45 ° by Lugt and Haussling did reveal the monotonic 
approach and oscillatory approach to steady state, respectively. 

The boundary between regimes I and II can be closely 
approximated by 

Re= 7 (14) 

where l, and I t are the characteristic lengths in the streamwise 
and transverse direction, respectively, and ~ is an empirical 
constant. Since regime I and regime II are distinguished by the 
presence of a separation bubble, Equation 14 was conceived 
based on the speculation that the flow in regime I is dominantly 
influenced by the diffusion of vorticity. When an elliptic cylinder 
at incidence is considered, two distinct lengths, that is, the 
transverse length, lt, and the streamwise length, l, may charac- 
terize the flow configuration. The Reynolds number is the single 
dynamic similarity parameter, as is well known. The ratio of 
diffusive terms will be like (IJlt) 2. This simple-minded dimen- 
sional analysis resulted in Equation 14. The lengths Is and It 
are given by 

12=l 2 cos 2 ; t+t  2 sin 2 ~t (15a) 

l 2 =12 sin 2 ~+ t  2 COS 2 ~ (15b) 

where t is the thickness of the elliptic cylinder. 
When the constant 3' was chosen to be 8.5, the boundary 

between regime I and II was very closely traced, as shown in 
Figure 2. For the case of circular cylinder, where l. = l t, Equation 
14 gives the critical Reynolds number of 8.5. It is reminded 
that the critical Reynolds number for a circular cylinder, at 
which twin vortices start to appear, is about 6.1 Equation 14 
also implies that, when an elliptic cylinder is normal to the free 
stream, the critical Reynolds number decreases as the ellipse 
becomes thinner, as pointed out by Batchelor. 2 

Flow regimes with oscillating wakes: regions III, IV, 
and V 

When the incidence angle increases beyond the limit within 
which the flow exhibits a steady and stable character, the flow 
becomes unsteady; the streamlines in the wake become wavy 
and the forces acting on the cylinder become periodic. The 
unsteady flow regime can further be divided into three sub- 
regimes. We designate these three subregimes as regime III, IV, 
and V, respectively (see Figure 2). The flow characteristics in 
these regimes are discussed next. Flow in regime III (Figure 2) 
is typified by the streamlines and vorticity contours exemplified 
in Figure 4. The streamline pattern continuously undergoes a 
periodic change. The sequence of instantaneous streamline 
patterns exhibited in Figure 5 demonstrates this character. Note 
that a separation bubble is formed alternately. The alternate 
formation of a separation bubble is accompanied by the 
formation of the instantaneous "alleyways" of fluid (see Perry 
et aI.17). Streamlines of a flow in this flow regime from some 
downstream distance appear to be sinusoidal (Figure 4). 
However, the amplitude of the sinusoidal streamlines is much 
smaller than that of the streamlines of regime IV or V flows. 
Presumably, the flow situation in regime III is analogous to 
that of the unsteady flow regime categorized as the incipient 
K a r m a ,  range by Morkovin is of the flow past a circular 
cylinder. Recently, Jackson .9 computed the critical Reynolds 
numbers for various bodies at which the transition from steady 
to periodic flow occurs by locating a Hopf bifurcation point. 
The results of Jackson for a flat plate was about 27.8. In our 
case of the elliptic cylinder, it was about 25. Also, it is noted 
that the critical Reynolds number for the flat plate at 30 ° 
incidence lies very close to that for the present case of the elliptic 
cylinder. These observations point to the belief that the solid 
line between regime II and III represents the locus of Hopf 
bifurcation point for the slender elliptic cylinder under present 
investigation. 
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0 

Figure 6 Streamlines and equivorticity lines for Re=300, ¢=50  ° 
at t =  30 

As the incidence increases, the undulation of streamlines in 
the wake became more pronounced. The conspicuous undulation 
of streamlines is obviously a result of the formation of discrete 
vortex cores in the wake. Examination of the vorticity contours 
revealed that the discrete vortices emerge at a much shorter 
distance from the trailing edge when the incidence is increased. 
As an illustration, the streamlines and equivorticity lines for 
the case of = = 50 ° and Re = 300 are exhibited in Figure 6. The 
case presented in Figure 6 corresponds to a flow in regime V. 
As seen from the figure, the undulation of streamlines in regime 
V is far more complex. Streamlines at some typical instants are 
displayed in Figure 7. The leading-edge separation bubble and 
the trailing-edge separation bubble shed alternately in the wake 
as discrete vortices. Usually, a secondary bubble is induced 
about the mid-chord by the roll-up of a strong vortex in the 
vicinity of the cylinder. Later, this secondary bubble grows and 
is merged with the trailing edge bubble. The growth of 
separation bubbles and their shedding into the wake are 
responsible for the large amplitude in periodic variations of the 
CL-CUrV¢. The frequency of oscillation of CL-CUrVCS in regime 
V was found to be much lower compared to that of regime III 
flows. The periodic variation of streamlines and eL-curve 
suggests that the regime V flows correspond to the pure Karman 
range of Morkovin. The distinct characteristic differences 
between regimes III and V were unaffected by the size of the 
calculation domain as was used in the present computations. 

The regime IV flow is intermediate between regime III and 
V flows; the boundary band between these two regimes is 
referred to as regime IV. In this intermediate regime there 
appear two dominant frequencies in the CL-Curves. A high- 
frequency oscillation mode was superposed on a low-frequency 
mode. The intermediate nature of oscillation in regime IV flows 
is clearly visible in Figure g, where the CL-curves for the three 
unsteady regimes are compared. To delineate the frequency 
characteristics of the unsteady flow regimes, a finite Fourier 
analysis of the CL-Curves was carried out. The results are 
contained in Figure 9. It is seen that the dominant frequency 

23.176 

24.983 

26.790 

28.598 

30.405 

32.212 

Figure 7 The sequential development of streamlines with time for 
Re = 300, = = 50 ° 
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Figure 8 The variation of CL*curves with time at various incidences 
(Re = 500) 

of regime lII flow (~=20 °) is about twice as high as that of 
regime V flow (~,=35°). In regime IV flows, two dominant 
frequency peaks are present. Also, the gradual migration of 
energy from the higher frequency mode to the lower frequency 
one is noticeable. 
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The degree of interaction between the near surface flow and 
the wake can be illustrated by the movement of singular points 
(i.e., zero shear stress points) over the surface. Such an 
illustration is provided in Figure 10. It is noticed that the 
movement of a singular point near the leading edge is rather 
insensitive to the change of incidence, while the other singular 
points are very sensitive. The amplitude of the periodic variation 
of the singular points of regime III flow (Figure 10) is seen to 
be much smaller than that of regime V flow (Figure 10). Again, 
regime IV flows exhibit intermediate properties (Figures 10(b) 
and (c)). The movement of singular points depicted in the figure 
demonstrates that the interaction between the near surface flow 
and the wake becomes stronger as the incidence is increased. 
This tendency can also be realized in the CL-Curves, which 
merely reflect the pressure distribution and the skin friction 
around the surface of the cylinder (see Figure 8). 

The boundaries confining regime IV flows were very difficult 

20 ° 

* ~ J ~ ~ ' ~ - T " " - ' - ~  250 

27'50 

; l 300 

_ : 32.50 
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St 

Figure 9 The power spectra of CL-Curves at various incidences 
(Re = 500) 

to pinpoint. Thus, in the regime diagram of Figure 2, those 
were marked by a broader, shaded band. However, the existence 
of an intermediate region (which is fairly wide) between the 
incipient Karman range and the pure Karman range is a very 
unique feature in the flow past an elliptic cylinder at incidence. 
So far, the existence of such a region has not yet been fully 
appreciated, especially, in the case of a circular cylinder. 

Since there are two dominant frequencies in regime IV flows, 
the Strouhal number in this regime is somewhat obscure to 
define. Thus, in Figure 11, where the variation of the Strouhal 
number with the incidence is presented, the curves corresponding 
to regime IV flows are marked by shaded dashed lines. It is 
noted that the Strouhal number decreases with the incidence 
for a given Reynolds number. More importantly, the increase 
of the Strouhal number with the Reynolds number is apparent 
only in regime III  flows. The dependence of the Strouhal 
number on the Reynolds number is virtually negligible in regime 
V flows, at least in the present range of investigation. Also 
shown in the figure is a critical Strouhal number curve plotted 
from Jackson's data for a fiat plate. It is seen that the Strouhal 
numbers for the present elliptic cylinder are larger than those 
for the case of a flat plate. 

C o n c l u s i o n  

A systematic numerical experiment was performed to investigate 
the details of the laminar unsteady flows past an elliptic cylinder 
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Figure 10 The movement of singular points on the surface with time at various incidences for Re=300:  (a) ==22.5° ;  (b) ==27.5° ;  (c) 
==32.5°;  (d) ==37 .5  ° 
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at incidence. Five regimes of distinguished flow characteristics 
were identified. Steady flow region could be divided into two 
regimes. The streamline pattern in one r e , m e  (regime I) was 
characterized by a reattachment point and a separation point, 
which did not possess any separation bubble. The other steady 
flow r e , m e  (regime II) was characterized by the existence of 
a separation bubble. The critical Reynolds number signaling 
the appearance of a separation bubble was well represented by 
the square of the transverse to longitudinal characteristic length 
ratio. 

The boundary between the steady flow regime and the 
unsteady one could be viewed as the locus of Hopf bifurcation 
point. The unsteady flow region could further be classified into 
three regimes. The first regime (regime III) corresponded to the 
incipient Karman range and another one (regime V) to the pure 
Karman range. The third one (regime IV) was an intermediate 
regime between these two. The shedding frequency of regime 
III was about twice as high as that of regime V. Regime IV 
flows were found to have two discrete characteristic frequencies. 
The Strouhal number was found to depend strongly on the 
Reynolds number only in the incipient Karman range (regime 
III) for the present case of elliptic cylinder. 
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